3、安装MSC Licensing,双击crack中的msc licensing_11.13.3_windows64.exe运行,勾选install msc license server only,
10、这里输入27500 @ yourhostname,也就是前面固定27500 @ 再加上你的电脑名称,例如小编的是27500 @DESKTOP-J2AKS2F,点击next
11、继续点击next,并等待安装完成即可
软件优势
1、几何和网格划分
·以ACIS,IGES,Parasolid,STEP,STL和中性格式导入CAD文件
VDAFS
·以CATIA V4,CATIA V5,DXF,Inventor,JT,Pro / ENGINEER,Solidworks和Unigraphics的原生CAD格式导入几何体
·创建和编辑曲线,曲面和实体
·确定CAD几何图形
·使用自动网格生成器创建1D,2D和3D越来越高的元素
·优化和编辑网格实体
·创建用于分析的弹簧和缓冲器·创建离散连接器,例如RBE2,RBE3,伺服链路,CBUSH,CFAST和CWELD
·在其他元素中插入节点或元素
·检查模型的完整性
2、材料建模
·定义非线性材料参数'·曲线拟合实验数据,以获得弹性体和金属的参数
·指定温度相关的材料属性
·将属性定义为其他自变量的函数
3、载荷和边界条件
·定义所需的力,力矩,位移,压力和旋转
·指定与每个多物理场模型设置相关的边界条件
·将边界条件应用于几何实体,以便轻松转移到关联网格
·将边界条件定义为其他自变量的函数
·轻松地将载荷和边界条件分组到载荷工况中
4、联系
·轻松定义适用于所有几何形状的可变形和刚性接触体
·从CAD装配模型自动创建接触体
·使用联系表自定义联系人交互
·定义摩擦系数和其他参数以进行接触分析
·支持大变形过盈配合
·支持多物理场应用中的联系。
·准确评估传递载荷和通量
5、后期处理
·获得您想要的格式的结果图,包括等高线图,等高线,切割平面,等值面,张量图,波束图等
·查看结果的时间历史保存和任意位置
·使用路径图查看沿任意路径的任何结果的空间变化
·为报告和演示文稿创建图像和电影
·跟踪材料颗粒流动
·为按范围或最大/最小选择的结果创建报告
·可视化3D光束接触
·可视化接触应力
6、建模工具
·轻松创建螺栓模型和负载
装配分析
·创建充气封闭空腔和
分析他们对结构性的影响
响应
·将预先状态从一次分析转移到
另一个
·将轴对称分析的结果映射到
一个3D模型
·创建对称性和循环对称性
边界条件
·定义焊接路径和填充元件
用于焊接分析
·激活和取消激活元素
·定义裂缝分析的裂缝提示
·定义电气线圈绕组
电磁分析
7、静态分析
·执行线性和非线性静态分析,以虚拟测试您的设计
·包括高级非线性材料模型
·结合大变形和大应变行为
·精确模拟非线性边界条件,包括从动力效应,基础和接触
·执行蠕变模拟以确定结构的长期响应。
·执行后屈曲分析以执行稳定性研究
·确定惯性释放力以平衡自由结构
·进行轮胎的稳态滚动分析
·由于摩擦而进行机械磨损分析
·导出或导入DMIG文件以与MSC Nastran兼容
·执行全局本地分析以更好地捕获本地行为
8、动态分析
·对结构进行自然模式分析,以确定动态载荷下的结构稳定性
·进行频率响应分析,受到谐波负载或随机振动的影响,以分析结构性能
·包括先进的阻尼模型,包括在橡胶和塑料中观察到的频率和变形相关的阻尼
·通过线性和非线性瞬态分析获得对结构动态性能的深入了解
·通过接触,非线性材料和负载条件的准确性来提高精度
·创建可能与Adams共享的模态中性文件(MNF),包括非线性预加载
·一致或集总质量矩阵
9、传播热量
·对一维,二维和三维物体进行稳态和瞬态分析
·获得线性和非线性传热问题的结构中的温度分布
·模型非线性包括温度依赖性,相变,潜热效应,流动方向的热对流和非线性边界条件(对流和辐射)
·快速准确地计算视图因子,取决于变形
·使用先进的热解模型模拟热保护系统(TPS)的热降解
·对空间系统,制动器和生物医学应用进行消融分析
·计算接触的多个组件的热通量
10、热机械联轴器
·模拟制造过程
·分析由于环境温度变化和结构中的热梯度引起的结构响应
·由于不同部件之间的塑性和摩擦而产生的模型发热,用于精确物理
·在复合材料制造中加入由于固化产生的热量。
·模拟退火的影响
·模拟由于大变形声学和耦合声学结构分析引起的热边界条件变化的影响
·模拟窗户密封
·在刚性和可变形腔体中进行声学分析
·计算腔体的基本频率以及腔体中的压力分布
·计算声学介质对结构动态响应的影响以及结构对声学介质动态响应的影响
·空腔可能会发生很大的变形
11、流体力学
·使用Navier-Stokes方程进行层流分析
·开展涉及流体热耦合,流固耦合和流体 - 热 - 固耦合的研究
·解决二维和三维静电和磁静力学中的稳态和瞬态流动问题
·评估身体或介质中的电场和磁场
·计算电势场,电位移矢量,磁感应,磁场矢量等,以获得洞察力
·模型无限域与半
12、无限元素,提高准确性
·确定静电分析中电导体之间的电容
·在静磁分析中计算由于导线或线圈引起的电感
13、电磁分析
·执行瞬态和谐波全耦合电磁分析,以计算受外部激励影响的电场和磁场
·在瞬态分析中计算磁导率作为磁场的函数
·计算磁通密度,磁场矢量,电通量密度和电场强度以及电位,节点电荷和电流
14、压电分析
·模拟材料中应力和电场耦合的压电效应
·同时解决节点位移和电势
·执行静态,瞬态动态,谐波和特征值分析,以更好地理解材料响应·结合传热分析进行耦合热压电分析
15、耦合静电结构分析
·模拟MEMS
·模拟库仑力对结构构件的影响和变形对静电场的影响
·不同物体之间的模型接触,并模拟它们在场地上的相互作用的影响
16、耦合热电分析(焦耳加热)
·模拟加热器,除雾器,电子设备,执行器
·计算导体中电流产生的热量
·模型温度相关的电阻和内部热量作为电流的函数
·确定设备的电阻
17、耦合电 - 热 - 力学分析
·模拟焦耳加热效应引起的结构响应
·考虑由于对流,辐射和温度相关的热导率和比热而产生的非线性
·由于几何和材料行为,模拟具有非线性的结构
·使用接触分析分析多个组件之间的相互作用耦合磁静态结构分析 - 热
·模拟洛伦兹力对静磁场中结构构件和变形影响的影响
·不同物体之间的模型接触,并模拟它们在场地上的相互作用的影响
18、耦合电磁热分析(感应加热)
·模拟感应加热,采用交错的谐波电磁分析方法,然后进行热分析
·计算感应电流,产生热量和热通量
·结合材料数据的温度依赖性,提高精度
19、耦合电磁 - 结构 - 热分析
·模拟感应加热,采用交错的谐波电磁分析方法,然后进行热应力分析
·计算感应电流,产生热量和热通量
·结合材料数据的温度依赖性以提高准确性
·准确确定表面应变和应力
·利用自适应网格划分或双网格方法来模拟空中的大运动
·预测表面处理所需的功率
20、弹塑性材料
·模型各向同性,正交各向异性和各向异性弹性材料
·使用各向同性,运动学或组合硬化规则来模拟加工硬化
·模型可塑性从屈服准则的选择中精确选择,包括von Mises,Hill各向异性屈服函数,Barlat,Mohr-Coulomb和指数Cap模型
·通过粉末材料模型精确模拟颗粒材料行为
·使用Chaboche模型研究循环塑性对塑性应变的影响
·模拟韧性金属的损伤
·将热效应和速率效应与Power法模型,Johnson-Cook,Cowper-Symmonds或Kumar模型结合使用时间相关的非弹性材料模型
·分析蠕变是高温下的重要现象
·研究塑性和蠕变对结构行为的综合影响
·模拟结构上的膨胀蠕变(膨胀)以提高精度
·材料数据拟合
·通过热流变学简单的粘弹性材料模型分析各向同性和各向异性行为
·根据橡胶和塑料的粘弹性,结合频率相关的阻尼模型
·使用选择的材料模型来改善结果准确性,以模拟粘塑性行为
·在蠕变和松弛研究中包括温度效应以改善结果
21、复合材料
·模型壳结构,其具有由不同材料或相同各向异性材料的层组成的层,具有不同的层厚度和不同的取向
·在每层中加入线性和非线性材料特性·使用渐进式失效分析(PFA)模拟材料的降解
·模拟材料的分层
·使用提供建模灵活性的任何多个方向规范选项
22、非线性低弹性材料
·模拟广义非线性弹性材料,模拟具有非线性应力 - 应变关系的材料的行为
·使用多种建模选项中的任何一种,包括基于应力 - 应变关系的模型,应变不变模型,主应变空间模型,双模弹性,其可以不包含张力,有限张力,无压缩或有限压缩
23、形状记忆材料
·模拟形状记忆合金在高温奥氏体相和低温马氏体相之间的可逆热弹性转变
:模型转换引起的变形和马氏体的不可逆永久变形根据您的加载条件选择机械和热机械形状记忆模型
24、弹性体
·从多种材料模型中选择,包括Generalized Mooney-Rivlin,Ogden,Arruda-Boyce,Bergrstrom-Boyce,Gent和Marlow代表弹性体
·通过集成的曲线拟合功能轻松获得弹性材料模型所需的材料参数
·通过大应变粘弹性模型分析弹性体的热效应和蠕变/松弛
25、特种材料
·模型复杂的多层垫片元件,通常由不同厚度的不同材料制成
·模拟复杂的加载和卸载行为
·在垫圈分析中执行机械,热或热机械耦合分析,以获得所需的精度和所需的输出
·分析混凝土等低张力材料,以准确确定复杂载荷下的结构强度和性能
·将钢筋结合到复合材料,生物材料或钢筋混凝土等增强结构模型中
·使用Drucker-Prager,Mohr-Coulomb,Cam-Clay,指数帽等配方分析土壤材料的行为及其变化
26、联系设置
·通过选择元素定义接触体(线性和二次),无需定义接触边界元素
·通过自动接触边界检测缩短接触设置时间
·通过使用CAD几何曲面和曲线定义刚性,缩短建模时间并提高精度体
•将速度,位移,载荷,力矩和旋转应用于刚体
·使用刚体应用对称边界条件
·使用接触表自定义物体之间的接触检测
·准确分析壳与壳或壳与固体之间的接触
·预测接触壳体两侧
·分析梁与任意梁截面的接触
·分析使用梁元件但具有3D接触特性的石油,汽车和生物医学工业中观察到的管中管接触行为
·使用段到段接触更平滑的结果轮廓和克服主从接触方法的局限性的方法·容易模拟干涉配合和覆盖URE
27、摩擦
·不同触点对之间具有不同的摩擦系数
·从多种摩擦模型中选择适合您的要求 - 库仑摩擦,剪切摩擦,粘滑摩擦和双线性摩擦模型
·使用胶水选项通过防止相对切向运动来分析具有非常高摩擦力的接触
·通过自动胶水停用来分析接触体之间的胶水故障
·分析热驱动接触条件
·摩擦系数近热接触可用于表示
28、耦合分析中的联系
·进行热接触分析,无需进行结构分析,以研究不同物体之间的热传递
·研究摩擦产生的热量对结构行为的影响,并支持耦合分析
·接触可用于所有多物理场模拟
·分析接触体之间的电流流动,以获得准确的结果
·摩擦系数等接触参数可能是温度或其他状态变量的函数。
29、联系结果
·分析接触体之间的接触进程
·研究接触力和压力,并绘制接触区域的分布图
·总结身体上的接触力以评估总力量
·获得总接触面积
30、局部适应性
·增加关键区域中的元素数量,以提高准确性并最大限度地降低成本
·通过细分满足任何可用条件的元素来自动更新网格
·更新新创建的元素和面的边界条件
·将节点附加到与网格其余部分关联的曲线或曲面,以使边界平滑
31、全球适应性
·使用质量更好的网格自动替换接触体的扭曲网格
·在没有用户干预的情况下将旧网格的结果映射到新网格
·自动将边界条件传输到新网格
·解决2D和3D模型,提高收敛性和准确性
·基于溶液量生成新的精制网格,例如塑性应变或应变能密度。
·利用自适应网格划分来捕获裂缝传播
32、成型
·模拟成形操作,如制动成形,液压成形,锻造,拉伸成形,深拉和轧制成形
·冷成型或热成型操作
·模拟挤出和轧制等连续操作
·简易模型多阶段流程
·计算并最大限度地减少残余应力,以改进设计
·准确计算制造过程中的回弹
·适用于金属玻璃和塑料
·使用自动重新网格化来获得准确的结果并改善收敛性
33、其他流程
·模拟焊接过程及其对最终结构变形的影响
·导入NC机床文件并分析材料去除引起的变形
·通过螺栓安装和铆接研究装配过程
·通过退火去除残余应力,用于后续产品测试
34、复合材料
·分析固化进程并优化设计和工艺参数
·预测树脂固化引起的收缩
·进行固化 - 热 - 机械耦合分析,以预测固化过程中残余应力的累积
35、伤害模型
·使用基于Bonora或Gurso增长的模型计算韧性材料中的损伤累积
·使用Lemaitre,Cockroft-Latham或Oyane模型计算损伤因子
·模拟Mullin因弹性体中聚合物链断裂而产生的影响和损伤累积
·使用Bergstrom-Boyce或并行模型将橡胶损伤模型与粘弹性行为相结合
·研究混凝土中的脆性开裂和破碎
36、复合失败
·通过选择包括最大应力和应变标准的行业公认的失效标准来分析层压板失效,Hill,Hoffman,Tsai-Wu,Hashin,Hashin Fabric,Hashin tape,Puck和Strain Invariant Failure Theory(SIFT)失效准则
·分析复合材料的渐进性失效·使用粘合区建模研究层板之间粘合的分层失效
37、断裂力学
·使用Lorenzi方法或虚拟裂缝闭合技术(VCCT)评估能量释放率和应力强度因子
·计算脆性和韧性材料在小型和大型应变下的能量释放率自动裂纹扩展
·分析直接加载流变模型或疲劳载荷下的裂纹扩展
·模拟沿边缘或沿接触区域的裂缝增长
·模拟裂纹扩展,以准确跟踪裂纹前沿或利用
38、自动自适应网格划分
·确定低周期或高周疲劳寿命
39、穿
·分析由于颗粒的影响,部分振动或流动引起的剪切应力引起的机械腐蚀
·研究由于热处理引起的材料分解引起的热解
·模型热化学烧蚀高热通量的材料
·通过模拟刀具磨损来研究刀具的有效性
40、求解器
·使用专为实现最佳性能而设计的求解器,包括多边形,Pardiso,MUMPS和CASI迭代求解器
·使用迭代求解器运行较大的模型,而不会占用大量内存
·使用核外选项有效利用磁盘空间来解决大型模型·受益于NVIDIATM GPU以提高性能
·求解器特定的带宽优化,以减少存储空间
41、并行
·通过使用多核桌面上的所有可用内核来加速您的解决方案
·通过并行化解决方案的所有阶段(即输入,汇编,解决方案,压力恢复和输出),通过域分解方法获得真正的并行化
·自动和手动分解模型以进行并行化
·充分利用您的硬件 - 是否共享内存并行或分布式内存并行系统